An iterative scaling function procedure for solving scalar non-linear hyperbolic balance laws

نویسندگان

چکیده

The scaling of the exact solution a hyperbolic balance law generates family scaled problems in which source term does not depend on current solution. These are used to construct sequence solutions whose limiting function solves original problem. Thus this gives rise an iterative procedure. Its convergence is demonstrated both theoretically and analytically. analytical demonstration terms local time existence theorem L2 framework for class s(q) bounded, with s(0)=0, locally Lipschitz belongs C2(R)?H1(R). A convex flux function, usual uniqueness conservation laws, also needed. For numerical demonstration, set model equations solved, where conservative finite volume method using low-dissipation implemented iteration stages. error against reference computed compared accuracy two conventional first order schemes assess gaining present Regarding only scheme explored because development useful procedure interest work, high-order accurate methods should increase computational cost global Numerical tests show that approach feasible

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interesting Class of Hyperbolic Balance Laws

Abstract. This paper presents an observation that under reasonable conditions, many systems of hyperbolic balance laws from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal relation in Modern Thermodynamics. It displays a direct relation of irreversible processes to the entropy change. We show that the prop...

متن کامل

Lyapunov exponential stability of linear hyperbolic systems of balance laws

Explicit boundary dissipative conditions are given for the exponential stability in L-norm of one-dimensional linear hyperbolic sytems of balance laws ∂tξ + Λ∂xξ −Mξ = 0 over a finite space interval, when the matrix M is marginally diagonally stable. The result is illustrated with an application to boundary feedback stabilisation of open channels represented by linearised Saint-Venant-Exner equ...

متن کامل

Linear Scaling Laws in Bifurcations of Scalar Maps

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2021

ISSN: ['1873-5460', '0168-9274']

DOI: https://doi.org/10.1016/j.apnum.2020.12.009